Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
Dalton Trans ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597208

RESUMO

In [Mn(5-MeOsalen)(Cl)]2(dibenzo[24]crown-8), dibenzo[24]crown-8 formed a supramolecule via multi-point interactions with the [Mn(5-MeOsalen)(Cl)] dimer. The dimer was magnetically isolated with ST = 4 and weak interdimer magnetic interactions. The crystal exhibited single-molecule magnet behaviour with an anisotropic barrier of 26(1) K, which is the highest among the Mn-salen series reported to date.

3.
BMC Public Health ; 24(1): 782, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481192

RESUMO

BACKGROUND: Previous studies have shown subjects suffering from diabetes or persistent hyperglycemia were more likely to develop tuberculosis (TB). However, the global burden of TB attributed to high fasting plasma glucose (HFPG) remains unclear. This study aimed to characterize the global, regional, and national TB burden attributed to HFPG from 1990 to 2019. METHODS: With Global Burden of Disease study 2019, the numbers and age-standardized mortality rates (ASMR) and age-standardized disability-adjusted life years (DALY) rates (ASDR) of TB attributed to HFPG at global, regional, and national levels from 1990 to 2019 were extracted. The locally weighted regression model was applied to estimate the TB burden for different socio-demographic index (SDI) regions. RESULTS: Globally, the ASMR and ASDR attributed to HFPG were 2.70 (95% UI, 1.64-3.94) and 79.70 (95% UI, 50.26-112.51) per 100,000 population in 1990, respectively. These rates decreased to 1.46 (95% UI, 0.91-2.08) and 45.53 (95% UI, 29.06-62.29) in 2019. The TB burden attributed to HFPG remained high in low SDI and Central Sub-Saharan Africa regions, while it declined with most significantly in high SDI and East Asia regions. Additionally, the ASMR and ASDR of TB attributed to HFPG were significantly higher in the male and the elderly population. CONCLUSIONS: The global TB burden attributable to HFPG decreased from 1990 to 2019, but remained high in low SDI regions among high-risk populations. Thus, urgent efforts are required to enhance the awareness of early glycemic control and TB treatment to alleviate the severe situation.


Assuntos
Glicemia , Tuberculose , Idoso , Masculino , Humanos , Controle Glicêmico , Jejum , Tuberculose/epidemiologia , Ásia Oriental , Carga Global da Doença , Anos de Vida Ajustados por Qualidade de Vida , Saúde Global
4.
J Alzheimers Dis ; 98(4): 1301-1317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517789

RESUMO

Background: Mild cognitive impairment (MCI), the prodromal stage of Alzheimer's disease, has two distinct subtypes: stable MCI (sMCI) and progressive MCI (pMCI). Early identification of the two subtypes has important clinical significance. Objective: We aimed to compare the cortico-striatal functional connectivity (FC) differences between the two subtypes of MCI and enhance the accuracy of differential diagnosis between sMCI and pMCI. Methods: We collected resting-state fMRI data from 31 pMCI patients, 41 sMCI patients, and 81 healthy controls. We chose six pairs of seed regions, including the ventral striatum inferior, ventral striatum superior, dorsal-caudal putamen, dorsal-rostral putamen, dorsal caudate, and ventral-rostral putamen and analyzed the differences in cortico-striatal FC among the three groups, additionally, the relationship between the altered FC within the MCI subtypes and cognitive function was examined. Results: Compared to sMCI, the pMCI patients exhibited decreased FC between the left dorsal-rostral putamen and right middle temporal gyrus, the right dorsal caudate and right inferior temporal gyrus, and the left dorsal-rostral putamen and left superior frontal gyrus. Additionally, the altered FC between the right inferior temporal gyrus and right putamen was significantly associated with episodic memory and executive function. Conclusions: Our study revealed common and distinct cortico-striatal FC changes in sMCIs and pMCI across different seeds; these changes were associated with cognitive function. These findings can help us understand the underlying pathophysiological mechanisms of MCI and distinguish pMCI and sMCI in the early stage potentially.


Assuntos
Disfunção Cognitiva , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Neostriado , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
5.
Neuroscience ; 545: 47-58, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490330

RESUMO

Mild cognitive impairment includes two distinct subtypes, namely progressive mild cognitive impairment and stable mild cognitive impairment. While alterations in extensive functional connectivity have been observed in both subtypes, limited attention has been given to directed functional connectivity. A triple network, composed of the central executive network, default mode network, and salience network, is considered to be the core cognitive network. We evaluated the alterations in directed functional connectivity within and between the triple network in progressive and stable mild cognitive impairment groups and investigated its role in predicting disease conversion. Resting-state functional magnetic resonance imaging was used to analyze directed functional connectivity within the triple networks. A correlation analysis was performed to investigate potential associations between altered directed functional connectivity within the triple networks and the neurocognitive performance of the participants. Our study revealed significant differences in directed functional connectivity within and between the triple network in the progressive and stable mild cognitive impairment groups. Altered directed functional connectivity within the triple network was involved in episodic memory and executive function. Thus, the directed functional connectivity of the triple network may be used as an imaging marker of mild cognitive impairment.

6.
Nanoscale ; 16(15): 7387-7395, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38545886

RESUMO

Inorganic cesium lead bromide nanocrystals (CsPbBr3 NCs) hold promising prospects for high performance green light-emitting diodes (LEDs) due to their exceptional color purity and high luminescence efficiency. However, the common ligands employed for passivating these indispensable NCs, such as long-chain organic ligands like oleic acid and oleylamine (OA/OAm), display highly dynamic binding and electronic insulating issues, thereby resulting in a low efficiency of the as-fabricated LEDs. Herein, we report a new zwitterionic short-branched alkyl sulfobetaine ligand, namely trioctyl(propyl-3-sulfonate) ammonium betaine (TOAB), to in situ passivate CsPbBr3 NCs via a feasible one-step solution synthesis, enabling efficiency improvement of CsPbBr3 NC-based LEDs. The zwitterionic TOAB ligand not only strengthened the surface passivation of CsPbBr3 NCs with a high photoluminescence quantum yield (PLQY) of 97%, but also enhanced the carrier transport in the fabricated CsPbBr3 NC thin films due to the short-branched alkyl design. Consequently, CsPbBr3 NCs passivated with TOAB achieved a green LED with an external quantum efficiency (EQE) of 7.3% and a maximum luminance of 5716 cd m-2, surpassing those of LEDs based on insulating long-chain ligand-passivated NCs. Our work provides an effective surface passivation ligand design to enhance the performance of CsPbBr3 NC-based LEDs.

7.
J Transl Med ; 22(1): 237, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439045

RESUMO

BACKGROUND: Intratumoral bacteria might play essential roles in tumorigenesis in different cancer types. However, its features and potential roles in hepatocellular carcinoma (HCC) are largely unknown. METHODS: In this study, we assessed bacterial RNA by 16S rRNA fluorescence in situ hybridization and detected bacterial lipopolysaccharide (LPS) via immunohistochemistry. Hepa1-6 cells were used to establish orthotopic HCC models in mice. 2bRAD sequencing for microbiome was performed to determine the intratumoral bacterial characteristics, and liquid chromatography-mass spectrometry was conducted to explore the metabolic profile. The potential association between different intratumoral microbiota and metabolites were evaluated. RESULTS: We detected bacterial 16S rRNA and LPS in HCC tissues from the patients with HCC. In HCC mouse model, we found that the intratumor bacteria in HCC tissues were significantly different to adjacent nontumor tissues. Furthermore, we observed different metabolites in HCC tissues and adjacent nontumor tissues, such as N-acetyl-D-glucosamine and a-lactose. Our results showed that several bacteria were significantly associated with metabolites, such as Pseudomonas koreensis, which was positively correlated with N-acetyl-D-glucosamine and negatively correlated with citrulline. CONCLUSIONS: This study confirmed the close association between different bacteria and metabolites, which might provide novel opportunities for developing new biomarkers and therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , RNA Ribossômico 16S/genética , Acetilglucosamina , Hibridização in Situ Fluorescente , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos , Bactérias
8.
Front Aging Neurosci ; 16: 1343926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410745

RESUMO

Objectives: Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are considered as the spectrum of preclinical Alzheimer's disease (AD), with abnormal brain network connectivity as the main neuroimaging feature. Repetitive transcranial magnetic stimulation (rTMS) has been proven to be an effective non-invasive technique for addressing neuropsychiatric disorders. This study aims to explore the potential of targeted rTMS to regulate effective connectivity within the default mode network (DMN) and the executive control network (CEN), thereby improving cognitive function. Methods: This study included 86 healthy controls (HCs), 72 SCDs, and 86 aMCIs. Among them, 10 SCDs and 11 aMCIs received a 2-week rTMS course of 5-day, once-daily. Cross-sectional analysis with the spectral dynamic causal model (spDCM) was used to analyze the DMN and CEN effective connectivity patterns of the three groups. Afterwards, longitudinal analysis was conducted on the changes in effective connectivity patterns and cognitive function before and after rTMS for SCD and aMCI, and the correlation between them was analyzed. Results: Cross-sectional analysis showed different effective connectivity patterns in the DMN and CEN among the three groups. Longitudinal analysis showed that the effective connectivity pattern of the SCD had changed, accompanied by improvements in episodic memory. Correlation analysis indicated a negative relationship between effective connectivity from the left angular gyrus (ANG) to the anterior cingulate gyrus and the ANG.R to the right middle frontal gyrus, with visuospatial and executive function, respectively. In patients with aMCI, episodic memory and executive function improved, while the effective connectivity pattern remained unchanged. Conclusion: This study demonstrates that PCUN-targeted rTMS in SCD regulates the abnormal effective connectivity patterns in DMN and CEN, thereby improving cognition function. Conversely, in aMCI, the mechanism of improvement may differ. Our findings further suggest that rTMS is more effective in preventing or delaying disease progression in the earlier stages of the AD spectrum. Clinical Trial Registration: http://www.chictr.org.cn, ChiCTR2000034533.

9.
Environ Res ; 248: 118338, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316390

RESUMO

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Assuntos
Tricloroetileno , Biodegradação Ambiental , Tricloroetileno/análise , Tricloroetileno/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Hidrogênio/análise , Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38358466

RESUMO

Given the lack of head-to-head studies of novel non-steroidal molecule topical therapies in mild-to-moderate atopic dermatitis (AD), network meta-analyses (NMAs) can provide comparative efficacy and safety data for clinical decision-making. In this NMA, we performed a literature search until 01 March 2023 for eligible studies written in English using databases, including PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov. Only double-blind randomized clinical trials (RCTs) with topical Ruxolitinib, Crisaborole, or Tapinarof versus vehicle for patients with mild-to-moderate AD were included. Baseline and follow-up data were extracted. Efficacy was evaluated using Investigator's Global Assessment (IGA) achieving "clear" or "almost clear," with 2 points or more improvement from baseline at the end of treatment, referred to as "IGA success." For binary outcomes, we analyzed in random-effects Bayesian NMA consistency models to compare the efficacy of these 3 topical therapies by odds ratio (OR) with 95% credibility interval (CrI). Overall, 10 phase 2 or phase 3 RCTs were identified, which included 4010 patients with mild to moderate AD. Compared with the topical vehicle control, all these 3 treatments had higher response rate of "IGA success" at the end of trial (Ruxolitinib 1.5% b.i.d: OR, 11.94; 95%CrI, 6.28-23.15; Crisaborole 2% b.i.d: OR, 2.08; 95%CrI, 1.46-3.52; Tapinarof 1% b.i.d: OR, 2.64; 95%CrI, 0.75-9.70). Notably, Ruxolitinib 1.5% b.i.d. had the highest probability of achieving "IGA success" in ranking analysis (Rank 1, SUCRA = 0.75) and lower risk of AE (Rank 8, SUCRA = 0.22). Besides, there was no difference in treatment-related adverse events between 3 therapies. Heterogeneity was not significant across studies.

11.
Foods ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338629

RESUMO

The loss of red hue in dry red wine has been a persistent issue for wine enterprises in western China. We investigated the changes in anthocyanins and non-anthocyanin phenols during the industrial-scale fermentation and one-year bottle aging of Vitis vinifera L. Merlot and Vitis vinifera L. Marselan, respectively, using the grapes in the Ningxia region. We also examined their correlation with color characterization. The study found that both anthocyanins and non-anthocyanin phenolics were rapidly extracted from grapes during alcohol fermentation. However, their concentrations decreased rapidly during malolactic fermentation. On the other hand, Vitisin A and Vitisin B were formed during alcoholic fermentation and decreased slowly from malolactic fermentation to storage period. Directly polymerized pigments (F-A and A-F), bridged polymerized pigments (A-e-F), and flavanyl-pyranoanthocyanins (A-v-F) from the reactions of anthocyanins (A) and flavan-3-ols (F), as well as pinotins were generated during the later stages of alcoholic fermentation, and remained at a high level throughout malolactic fermentation and bottle storage. Partial least squares regression and Pearson correlation analyses revealed that the red hue (a* value) of 'Merlot' and 'Marselan' wines was closely associated with monomeric anthocyanins and F-A type pigments. Furthermore, four pinotin components were positively correlated with the red hue (a* value) of 'Merlot' wine. These primary red components of the two varieties had a positive correlation with the level of flavan-3-ols. The data suggest that elevating the flavan-3-ol concentration during fermentation aids in improving the color stability of red wine.

12.
Sci Rep ; 14(1): 4926, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418897

RESUMO

The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Neoplasias Hepáticas/genética , Nomogramas
13.
Oncogene ; 43(9): 624-635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182896

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading contributors to cancer-related mortality worldwide. Nop2/Sun domain family member 5 (NSUN5), a conserved RNA 5-methylcytosine methyltransferase, is conventionally recognized as oncogenic. However, its role in HCC development remains unknown. In this study, we observed a remarkable upregulation of NSUN5 expression in both tumor tissues from patients with HCC, establishing a correlation with unfavorable clinical outcomes. NSUN5 knockdown and overexpression significantly inhibited and promoted HCC cell proliferation, respectively. Additionally, employing a combination of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RIP-seq techniques, we identified zinc finger BED domain-containing protein 3 (ZBED3) as a novel downstream target of NSUN5. Additionally, we found that the overexpression of ZBED3 counteracted the tumor-suppressing effect of NSUN5 knockdown and simultaneously reversed the inhibition of the Wnt/ß-catenin signaling pathway. In summary, we elucidated the oncogenic role of NSUN5 in HCC development and identified the ZBED3/Wnt/ß-catenin signaling pathway as its downstream target. This study provides a novel therapeutic target for further development in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , 5-Metilcitosina , RNA , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
14.
J Sci Food Agric ; 104(6): 3749-3756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234140

RESUMO

BACKGROUND: Laboratory scale experiments have shown that curdlan and gellan gum gelled together as curdlan/gellan gum (CG) hybrid gels showed better gel properties than the individual curdlan and gellan gum. In this study, CG and black wolfberry anthocyanin (BWA), CG and maltitol (ML) hybrid gels were constructed using CG hybrid gel as matrix. The effects of BWA or ML on the gel properties and microstructure of CG hybrid gels were investigated and a confectionery gel was developed. RESULTS: The presence of BWA increased the storage modulus (G') value of CG at 0.1 Hz, whereas ML had little effect on the G' value of CG. The addition of BWA (5 g L-1 ) and ML (0.3 mol L-1 ) increased the melting and gelling temperatures of CG hybrid gels to 42.4 °C and 34.1 °C and 44.2 °C and 33.2 °C, respectively. Meanwhile, the relaxation time T22 in CG-ML and CG-BWA hybrid gels was reduced to 91.96 and 410.27 ms, indicating the strong binding between BWA and CG, ML and CG. The hydrogen bond interaction between BWA or ML and CG was confirmed by the shift in the hydroxyl stretching vibration peak. Moreover, the microstructures of CG-ML and CG-BWA hybrid gels were denser than that of CG. In addition, confectionery gel containing CG-BWA-ML has good chewing properties. CONCLUSION: These results indicated that the incorporation of BWA or ML could improve the structure of CG hybrid gels and assign a sustainability potential for the development of confectionery gels based on CG complex. © 2024 Society of Chemical Industry.


Assuntos
Lycium , Maltose/análogos & derivados , Álcoois Açúcares , beta-Glucanas , Antocianinas , Polissacarídeos Bacterianos/química , Géis/química , Reologia
15.
Cell Commun Signal ; 22(1): 69, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273292

RESUMO

Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.


Assuntos
Neoplasias do Sistema Digestório , Humanos , Neoplasias do Sistema Digestório/diagnóstico , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/patologia , Dano ao DNA
16.
J Affect Disord ; 351: 738-745, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163566

RESUMO

BACKGROUND: Several studies have suggested an association between major depressive disorder (MDD) and abnormal brain structure. However, it is unclear whether MDD affects cortical gray matter volume, a common indicator of cognitive function. We aimed to determine whether MDD was associated with decreased cortical gray matter volume (GMV) through a Mendelian randomization (MR) study. METHODS: We obtained summary genetic data from a study conducted by the Psychiatric Genomics Consortium, which recruited a total of 480,359 participants (135,458 cases and 344,901 controls). Genetic tools-single nucleotide polymorphisms (SNPs)-of MDD were extracted from the study and their effects on gray matter volumes of the cortex and total brain were evaluated in a large cohort from the UK Biobank (n = 8427). The effects of the SNPs were pooled using inverse variance weighted (IVW) analysis and further tested in several sensitivity analyses. We tested whether C-reactive protein (CRP) levels and interleukin-6 signaling were the mediators of the effects using a multivariate MR model. RESULTS: Thirty-three SNPs were identified and adopted as genetic tools for predicting MDD. IVW analysis showed that MDD was associated with lower overall GMV (beta value -0.106, 95%CI -0.188 to -0.023, p = 0.011) in the frontal pole (left frontal pole, -0.152, 95%CI -0.177 to -0.127, p = 0.013; right frontal pole, -0.133, 95%CI -0.253 to -0.013, p = 0.028). Multivariate and mediation analysis showed that interleukin-6 was an important mediator of GMV reduction. Reverse causality analysis found no evidence that total GMV affected the risk of MDD, but showed that increased left precuneus cortex volume and left posterior cingulate cortex volume were associated with increased risk of MDD. LIMITATIONS: Potential pleiotropic effects and overestimation of real-world effects. Key assumptions for MR analysis may not be satisfactorily met. CONCLUSION: MDD was associated with a reduced GMV, and interleukin-6 might be a mediator of GMV reduction.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Substância Cinzenta , Análise de Mediação , Análise da Randomização Mendeliana , Interleucina-6/genética , Interleucina-6/metabolismo , Imageamento por Ressonância Magnética
18.
J Agric Food Chem ; 72(2): 1228-1243, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181223

RESUMO

It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased ß-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.


Assuntos
Vitis , Vinho , Ácido Abscísico/metabolismo , Vitis/genética , Vitis/metabolismo , Ácidos Indolacéticos/metabolismo , Odorantes/análise , Transcriptoma , Frutas/química , Metaboloma , Ácidos Naftalenoacéticos/análise , Vinho/análise
19.
CNS Neurosci Ther ; 30(2): e14387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37563866

RESUMO

OBJECTIVE: Glucosylceramidase (GBA) variants and onset age significantly affect clinical phenotype and progression in Parkinson's disease (PD). The current study compared clinical characteristics at baseline and cognitive and motor progression over time among patients having GBA-related PD (GBA-PD), early-onset idiopathic PD (early-iPD), and late-onset idiopathic PD (late-iPD). METHODS: We recruited 88 GBA-PD, 167 early-iPD, and 488 late-iPD patients in this study. A subset of 50 GBA-PD, 81 early-iPD, and 223 late-iPD patients was followed up at least once, with a 3.0-year mean follow-up time. Linear mixed-effects models helped evaluate the rate of change in the Unified Parkinson's Disease Rating Scale motor and Montreal Cognitive Assessment scores. RESULTS: At baseline, the GBA-PD group showed more severe motor deficits and non-motor symptoms (NMSs) than the early-iPD group and more NMSs than the late-iPD group. Moreover, the GBA-PD group had more significant cognitive and motor progression, particularly bradykinesia and axial impairment, than the early-iPD and late-iPD groups at follow-up. However, the early-onset GBA-PD (early-GBA-PD) group was similar to the late-onset GBA-PD (late-GBA-PD) group in baseline clinical features and cognitive and motor progression. CONCLUSION: GBA-PD patients exhibited faster cognitive and motor deterioration than early-iPD and late-iPD patients. Thus, subtype classification based on genetic characteristics rather than age at onset could enhance the prediction of PD disease progression.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Idade de Início , Glucosilceramidase/genética , Mutação/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/psicologia
20.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150621

RESUMO

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Assuntos
DNA , Guanina , Humanos , DNA/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...